Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Feng Zhang,^a Jian-Rong Zhang,^a Dao-Li Deng^a* and Ronald Hage^b

^aUnilever Research China, 99 Tianzhou Road, Shanghai 200233, People's Republic of China, and ^bUnilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands

Correspondence e-mail: dao-li.deng@unilever.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.011 Å R factor = 0.052 wR factor = 0.061 Data-to-parameter ratio = 8.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(1,4,7,10,13-Pentamethyl-1,4,7,10,13pentaazacyclopentadecane- $\kappa^5 N$)cobalt(II)

The title compound, $[Co(C_{15}H_{35}N_5)](ClO_4)_2$, conventionally abbreviated $[Co(Me_5PACP)](ClO_4)_2$, where Me_5PACP is 1,4,7,10,13-pentamethyl-1,4,7,10,13-pentaazacyclopentadecane, displays a significantly distorted trigonal-bipyramidal coordination geometry. The bond lengths and distances are comparable to those previously reported for cobalt(II) complexes with macrocyclic polyamine ligands. The N-Co-N angle for the axial sites is 160.4 (2)°. The perchlorate anions are not coordinated.

Comment

perchlorate

Transition metal complexes with macrocyclic ligands are of significant interest for oxidation catalysis. Manganese and iron complexes with macrocyclic ligands have received considerable attention (Hage *et al.*, 1994; Hubin *et al.*, 2000). Manganese complexes with pentaazamacrocyclic ligands show very high superoxide dismutase activity, as discovered by Riley & Weiss (1994). However, less attention has been paid to Co^{II} complexes with polyamine macrocyclic ligands as oxidation catalysts. The report that $[Co(NH_3)_5CI]Cl_2$ was found to have significant bleaching/oxidation activity with hydrogen peroxide (Diakun & Wright, 1989) aroused our interest in the study of other Co-polyamine complexes as oxidation catalysts. The macrocyclic ligand 1,4,7,10,13-pentamethyl-1,4,7,10,13-pentaazacyclopentadecane has five potential donor N atoms, which can afford stable Co^{II} complexes.

The molecular structure of (I) is illustrated in Fig. 1. Three N atoms (N2, N4 and N5) of Me₅PACP form a trigonal plane, with the Co^{II} atom at its center, while the other two N atoms (N1 and N3) occupy the axial positions, completing the trigonal-bipyramidal coordination geometry around the Co^{II} atom. The Co–N distances of 2.220 (5) and 2.228 (5) Å in the axial directions are significantly longer than the Co–N distances in the equatorial plane, which are 2.095 (5), 2.101 (5) and 2.151 (5) Å (Table 1). The bond lengths and distances are comparable to those previously reported for cobalt(II) complexes with macrocyclic polyamine ligands (Kueppers *et al.*, 1986; Hubin *et al.*, 2002). The N–Co–N angles in the

Received 18 September 2003 Accepted 30 October 2003 Online 8 November 2003

metal-organic papers

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

The asymmetric unit of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity.

equatorial plane are 142.1 (2), 133.4 (2) and 84.6 $(2)^{\circ}$, indicating a highly distorted trigonal-bipyramidal coordination geometry (Bhattacharyya et al., 2000; Hubin et al., 2002). The N1-Co-N3 angle for the axial positions is $160.4 (2)^{\circ}$, deviating significantly from the ideal 180°. A similar deviation was reported for another cobalt(II) complex having a trigonalbipyramidal coordination geometry with two apical N atoms linked to the same equatorial N atom (Britovsek et al., 1999). This observed distortion might be due to the CH₂CH₂ link between the neighboring N atoms, which form five-membered chelate rings. The N-Co-N angles in the five-membered rings $[80.1 (2)-84.6 (2)^{\circ}]$ are similar to those previously reported (Kueppers et al., 1986; Hubin et al., 2002). Of the angles not in the five-membered rings, those in the equatorial plane $[142.1 (2) \text{ and } 133.4 (2)^{\circ}]$ are much larger than those between the axial N atoms and equatorial N atoms [110.9 (2) and 114.1((2)°].

This single-crystal structure analysis confirms that (I) is an ionic compound, with $[Co(Me_5PACP)]^{2+}$ cations and uncoordinated ClO_4^- anions. The shortest $Co \cdots Co$ distance is 9.14 (1) Å.

Experimental

1,4,7,10,13-Pentamethyl-1,4,7,10,13-pentaazacyclopentadecane was prepared according to a reported procedure (Barefield & Wagner, 1973; Coates & Lincoln, 1982). The title compound, (I), was obtained when Co(ClO₄)₂.6H₂O (900 mg, 2.46 mmol), dissolved in water (3 ml), was added to a solution of 1,4,7,10,13-pentamethyl-1,4,7,10,13pentaazacyclopentadecane (420 mg, 1.47 mmol) in water (4 ml). The resulting red solid was filtered off, washed with a little water, and vacuum dried (yield: 60%, 480 mg). Analysis calculated for $C_{15}H_{35}Cl_2CON_5O_8$: C 33.20, H 6.50, N 12.90%; found: C 33.11, H 6.60, N 12.98%. Red crystals suitable for X-ray diffraction analysis were obtained from the filtrate after standing at 277 K for several days. Crystals can also be obtained by recrystallization from water.

 $m_r = 543.51$ Monoclinic, $P2_1/n$ a = 9.451 (2) Å b = 15.294 (4) Å c = 17.049 (4) Å $\beta = 98.47$ (2)° V = 2437.0 (10) Å³ Z = 4

Data collection

Rigaku AFC-7*R* diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (*TEXSAN*; Molecular Structure Corporation, 1989) $T_{min} = 0.79, T_{max} = 0.82$ 4450 measured reflections 4165 independent reflections 2297 reflections with $I > 3\sigma(I)$

Refinement

Refinement on F	H-atom parameters not refined
R = 0.052	$w = 1/[\sigma^2(F_o)]$
wR = 0.061	$(\Delta/\sigma)_{\rm max} = 0.005$
S = 1.75	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
2297 reflections	$\Delta \rho_{\rm min} = -0.37 \mathrm{e} \mathrm{\AA}^{-3}$
280 parameters	

reflections

 $\theta = 13.7 - 21.1^{\circ}$

 $\mu = 0.97 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.20$ mm

T = 293 K

Prism, red

 $R_{\rm int} = 0.031$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = 0 \rightarrow 10$

 $k = 0 \rightarrow 18$

 $l = -20 \rightarrow 20$

3 standard reflections

every 200 reflections

intensity decay: 2.9%

Table 1

Selected geometric parameters (Å, °).

Co-N1	2.220 (5)	N2-C12	1.476 (10)
Co-N2	2.101 (5)	N3-C4	1.495 (9)
Co-N3	2.228 (5)	N3-C5	1.477 (8)
Co-N4	2.151 (5)	N3-C13	1.464 (9)
Co-N5	2.095 (5)	N4-C6	1.483 (8)
N1-C1	1.493 (9)	N4-C7	1.470 (8)
N1-C10	1.464 (9)	N4-C14	1.479 (8)
N1-C11	1.474 (8)	N5-C8	1.489 (9)
N2-C2	1.494 (9)	N5-C9	1.497 (9)
N2-C3	1.486 (9)	N5-C15	1.482 (9)
N1-Co-N2	80.1 (2)	N2-Co-N4	142.1 (2)
N1-Co-N3	160.4 (2)	N2-Co-N5	133.4 (2)
N1-Co-N4	110.9 (2)	N3-Co-N4	82.2 (2)
N1-Co-N5	82.6 (2)	N3-Co-N5	114.1 (2)
N2-Co-N3	80.7 (2)	N4-Co-N5	84.6 (2)

H atoms were positioned geometrically, with C-H = 0.93-1.01 Å, and were not refined; $U_{iso}(H)$ values were set at 0.0715 Å².

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1989); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1989); program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1985); program(s) used to refine structure: *TEXSAN*; molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

References

Barefield, E. K. & Wagner, F. (1973). Inorg. Chem. 12, 2435-2439.

- Bhattacharyya, S., Ghosh, D., Mukhopadhyay, S., Jenseen, W. P., Tiekink, E. R. T. & Chaudhury, M. (2000). J. Chem. Soc. Dalton Trans. 24, 4677–4682.
- Britovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., McTavish, S. J., Redshaw, C., Solan, G. A., Stromberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728–8740.

- Coates, J. H., Hadi D. A. & Lincoln, S. F. (1982). Aust. J. Chem. 35, 903–909.
- Diakun, E. M. & Wright, C. T. (1989). Patent Appl. US 4 810 410.
- Hage, R., Iburg, J. E., Kerschner, J., Koek, J. H., Lempers, E. L. M., Martens, R. J., Racherla, U. S., Russell, S. W. & Swarthoff, T. (1994). *Nature (London)*, 369, 637–639.
- Hubin, T. J., Alcock, N. W., Clase, H. J., Seib, L. L. & Busch, D. H. (2002). *Inorg. Chim. Acta.* 337, 91–102.
- Hubin, T. J., McCormick, J. M., Collinson, S. R., Buchalova, M., Perkins, C. M., Alcock, N. W., Kahol, P. K., Raghunathan, A. & Busch, D. H. (2000). J. Am. Chem. Soc. 122, 2512–2522.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kueppers, H. J., Neves, A., Pomp, C., Ventur, D., Wieghardt, K., Nuber, B. & Weiss, J. (1986). *Inorg. Chem.* 25, 2400–2408.
- Molecular Structure Corporation (1989). MSC/AFC Diffractometer Control Software and TEXSAN (Version 5.0). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Riley, D. P. & Weiss, R. H. (1994). J. Am. Chem. Soc. 116, 387-388.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger and R. Goddard, pp. 175–189. Oxford University Press.